2-PHENYL-1,2,3-OSOTRIAZOLE <u>C</u>-NUCLEOSIDE ANALOGS SYNTHESIS AND DETERMINATION OF ANOMERIC CONFIGURATION

Mohammed A. E. Sallam Department of Chemistry, Faculty of Science Alexandria University, Alexandria - (Egypt)

<u>Summary</u>: A series of anomeric 2-phenyl-1,2,3-osotriazole <u>C</u>-nucleoside analogs has been prepared. The anomeric configuration was determined by a novel method from the chemical shift of the C-5 proton of the osotriazole base moieties.

<u>C</u>-Nucleoside analogs are useful tools for biochemical investigations and for antimitotic or antiviral research¹. The carbon-carbon linkage between the glycosyl and base moieties, makes these compounds more stable towards acid and enzymatic cleavage, than <u>N</u>-nucleosides. A satisfactory method for synthesis is by dehydration of the hydroxyalkyl chain of <u>C</u>-(hydroxyalklated) nitrogen heterocyclic derivatives by use of a strong acid²⁻⁵. This method has not been extensively used because of the uncertainty of their anomeric configuration⁶.

In the present work 2-phenyl-1,2,3-osotriazole C-nucleoside analogs having the D-lyxo-, D-arabino-, and D-ribo-furanosyl configuration were prepared from their precursors 3,6-anhydro-heptulose phenylosazones by cyclization of the bis-(phenylhydrazone) residues with copper sulphate. Dehydration of D-galacto-heptulose phenyloszone with methanolic sulphuric acid solution^{8,9}, then refluxing the product with copper sulphate, (Scheme 1), gave the anomeric mixture $4-(\beta-\underline{D}$ lyxofuranosyl)-2-phenyl-1,2,3-osotriazole], and $4-(\alpha-\underline{D}-1)xofuranosyl)-2-phenyl-$ 1,2,3-osotriazole 2, in 52% overall yield, they were separated by fractional crystallization. Compound 1; m.p. 125° , $[\alpha]_{D}^{22} + 4.3^{\circ}$ (C 2.4, methanol), high resolution mass spectrum showed m/e 277.105 (cal. for $C_{13}H_{15}N_{3}O_{4}$; 277.106). UV (methanol) λ_{max} 265 nm (log ϵ 4.4). Compound χ ; m.p. 204°, $[\alpha]_{D}^{22}$ + 51° (C 0.4, methanol), high resolution mass spectrum showed m/e 277.106 (calc. 277.106). UV (methanol) λ_{max} 266 nm (log ε 4.3). Acetylation of 1 and 2 with acetic anhydride and pyridine afforded 3 and 4 in 70% and 75% yield, respectively. Compound 3 was obtained as a syrup, high resolution mass spectrum showed m/e 403.139 (calc. for $C_{10}H_{21}N_{2}O_{7}$; 403.139). IR(CHCl₃) 1735 cm⁻¹(OAc). Compound 4; m.p. 114-115⁰, high resolution mass spectrum showed m/e 403.139 (calc. 403.139). IR (KRr) 1740 cm⁻¹ (OAc).

183

<u>p</u>-gluco-Heptulose phenylosazone afforded the anomeric mixture, $4-(\beta-\underline{p}-arabinofuranosyl)-2-phenyl-1,2,3-osotriazole 5 and <math>4-(\alpha-\underline{p}-arabinofuranosyl)-2-phenyl-1,2,3-osotriazole 6, in 46% overall yield. Compound 5; m.p. 130°, <math>[\alpha]_D^{22}$ -56,5° (C 1.1, methanol), high resolution mass spectrum showed m/e 277.107 (calc. for $C_{13}H_{15}N_3O_4$; 277.106). Compound ζ ; m.p. 144°, $[\alpha]_D^{22}$ + 66.2° (C 0.13, methanol), high resolution mass spectrum showed m/e 277.107).

The anomeric configuration was determined by a novel method from the n.m.r. spectra of these compounds. The chemical shift of the C-5 proton of the oso-triazole ring in β -nucleosides showed a down field shift, compared to the corresponding α -nucleosides (Table 1). This deshielding effect can be explained by the proximity of the C-5 proton to the furanosyl ring oxygen in the β -anomer. The assignment of the anomeric configuration by this method is more advantageous than that from the chemical shift of the anomeric proton^{10,11} since the C-5 proton can be easily distinguished as a sharp, well resolved, peak at the aromatic region. Additionally the anomeric proton of these nucleosides was exceptional; the trans 1,2 proton resonance was found down field in place of the expected cis 1,2 proton 12,13. This is in accord with the values of the coupling constant $J_{1,2}$ of the anomeric proton (Table 1). Low coupling constants (less than 3.5 Hz)¹⁴ can be assigned to the trans 1,2 anomeric protons.

Table 1		
Chemica	1 Shift	Coupling Constant
^H -í	H-5	
4.64	8.04	9.5
4.73	7.94	1.1
5.02	7.83	8.4
4.92	7.76	1.0
4.28	8.04	9.2
4.94	7.93	0
4.60	8.04	-
5.20	8.04	0
	Table 1 Chemica H-1 4.64 4.73 5.02 4.92 4.28 4.94 5.20	Table 1Chemical Shift $H-\hat{1}$ $H-5$ 4.648.044.737.945.027.834.927.764.288.044.947.934.608.045.208.04

n.m.r. spectra at 80 MHz, in dimethyl sulphoxide-d₆ with CD₃COOD added, for compounds 人,そ,ち,& and Za; compounds え,Ą and 没 chloroform-d. Internal reference tetramethylsilane.

The n.m.r. spectra were supported by the optical properties of these <u>C</u>-nucleosides. They obeyed Hudson isorotation rule¹⁵ at the sodium D-line and were consistent with the o.r.d. results in the long wavelength region (Figure 1).

4-(β -<u>D</u>-Ribofuranosyl)-2-phenyl-1,2,3-osotriazole χ , was obtained by similar treatments of <u>D</u>-<u>altro</u>-heptulose phenylosazone and was assigned the β -<u>D</u>-configuration from the chemical shift of the C-5 proton. Its isopropylidene derivative χ_b had a low coupling constant for the anomeric proton (Table 1), the difference, $\Delta\delta$, between the chemical shifts of the two methyl signals (0.20 ppm) confirms the β -<u>D</u>-configuration¹⁶⁻¹⁸, ($\Delta\delta$ for β -nucleosides is \geq 0.18, and for α anomers is \leq 0.10).

References

- S. Hanessian and T. H. Haskel, in pigman and D. Horton, The <u>Carbohydrates</u>: <u>Chemistry and Biochemistry</u>, Vol. II-A, Academic press, New York, 1970, pp. 139-211. S. Hanessian and A. G. Pernet, <u>Adv. Carbohydr. Chem. Biochem.</u>, 33 (1976) 111-188; R. J. Suhadolnik, <u>Nucleoside Antibiotics</u>, Wiley-Interscience, New York, 1970.
- 2. S. Moore and K. P. Link, J. Biol. Chem., 133 (1940) 293-311.
- C. F. Heubner, R. Lohmar, R. J. Dimler, S. Moore, and K. P. Link, <u>J. Biol.</u> <u>Chem</u>., 159 (1945) 503-515.
- 4. E. Scherider, G. Stöhr, and E. Hardegger, Helv. Chem. Acta, 37 (1954) 35-41.
- 5. H. El Khadem, E. Scherier, G. Stöhr and E. Hardegger, <u>Helv. Chim. Acta</u>, 35 (1952) 993-999.
- 6. M. Bobek, J. Farkas and F. Sorm, Tetrahedron Letters, (1966) 3115-3118.
- 7. M. Bobek, J. Farkas and F. Sorm, Tetrahedron Letters, (1968) 1543-1546.
- O. Diels and R. Meyer, <u>Annalen</u>, 519 (1935) 157-164; O. Diels, R. Meyer and
 O. Onnen, <u>Annalen</u>, 525 (1936) 94-117.
- H. El Khadem, M. M. A. Abdel Rahman and M. A. E. Sallam, <u>J. Chem. Soc.</u>, (1968) 2411-2414.
- 10. R. U. Lemieux and D. R. Lineback, Ann. Rev. Biochem., 32 (1963) 155-183.
- 11. J. D. Stevens and H. G. Fletcher, Jr., J. Org. Chem., 33 (1968) 1799-1805.
- 12. N. Nishimura and B. Shimizu, Chem. Pharm. Bull. (Tokyo), 13 (1965) 803-810.
- M. Haga, R. K. Ness and H. G. Fletcher, Jr., <u>J. Org. Chem</u>., 33 (1968) 1810-1815.
- L. B. Towensend, in W. W. Zorbach and R. S. Tipson (Eds.), <u>Synthetic Procedures in Nucleic Acid Chemistry</u>, Vol. 2, Wiley-Interscience, New York, 1973, pp. 267-398.
- 15. C. S. Hudson, J. Am. Chem. Soc., 31 (1909) 66-86.
- 16. M. A. E. Sallam, <u>Carbohydr. Res.</u>, 67 (1978) 79-89.
- 17. T. H. Dinh, A. Kolb, C. Couyette, and J. Igolen, <u>J. Heterocycl. Chem</u>., 12 (1975) 113-117.
- J. L. Imback, J. L. Barascut, B. L. Kam, and C. Tapiero, <u>Tetrahedron</u> <u>Letters</u>, (1974) 129-130.

(Received in UK 30 October 1979)